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In this paper we establish the equation of state near the coexistence curve (the region of small external
field, below the critical temperature) of the nematic-isotropic phase transition. The temperature
difference of T, — T*, where T, is the nematic-isotropic phase transition temperature and T* is the tem-
perature at which the light scattering intensity diverges in the supercooled isotropic phase of nematic-
isotropic transition, is obtained. The present results show considerable improvement over an earlier
work utilizing the equation of state near a critical and a tricritical point.

PACS number(s): 64.70.Md, 64.60.Ak

INTRODUCTION

The nematic-isotropic (N-I) phase transition has been
a topic of active theoretical and experimental studies over
the past few decades [1]. Early theories include the phe-
nomenological model of Landau—de Gennes [2] and the
Hamiltonian approach of Maier-Saupe [3]. There still
remains a series of fascinating problems associated with
the N-I transition that are not completely settled. The
most conspicuous shortcoming concerns the ratio
(T,—T*)/T, [4]. The temperature T, is the N-I transi-
tion temperature and temperature T* is the temperature
at which the light scattering intensity diverges in the su-
percooled isotropic phase. The experimental value of
T.—T*=1 K. In order to gain insight into this, several
workers showed how the inclusion of fluctuations can
give considerable improvement. The Maier-Saupe theory
gives this result as T, —T*=30 K and the Landau mean
field theory gives T, —T*=24 K. These calculations in-
clude Gaussian fluctuation only. To include higher order
effects Priest [5] did a renormalization group calculation
to show that T,—T*=12.8 K. In our earlier work [6]
we pointed out how the higher order epsilon (¢) expan-
sion in the renormalization group calculation gives an
improved result of T, —T*=7.46 K. The works of Refs.
[5] and [6] utilized only one experimental datum, namely,
the jump of 0.4 in the order parameter at T,. The
present work is also an analysis with fluctuation as the
basis. In this paper we have considered the property of
uniaxial system with continuous symmetry. We obtain
the equation of the uniaxial state near the coexistence
curve of the N-I phase transition. This equation of state
is then utilized in evaluating T,—T%*, which shows a
definite improvement over earlier results. Considering
the uniaxial system with a continuous symmetry, there
exists massless modes, Goldstone bosons at all tempera-
ture T < T, (critical temperature) when the external field
H is taken to be zero, leaving a spontaneously broken
symmetry. Because of these Goldstone modes, the limit
H —0 can be thought of as a critical point, forall T <T,.
In other words the transverse susceptibility becomes
infinite when H —0.
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THEORY

We have followed the same method as adopted in our
previous work [6] and also the method of [5] throughout
this paper. The model free energy of the Landau-de
Gennes form can be written as

F= [d%[LrQ2+V,0,V,0;)
‘“bQiijkai+u(QijQij)2_HijQij] . (1)

Here d% indicates a functional integration in d dimen-
sion over tensor field Q =Q(x). The tensor Q is 3X3,
symmetric, and traceless. The quadratic coefficient r is
written as r =r,[(T —T*)/T,] and b, u, and H are tem-
perature independent. Here rj is a positive constant. If b
were zero T* would be the mean-field second order tran-
sition temperature. We have b >0, T* is therefore the
(mean-field) absolute stability limit of the isotropic phase.
In the isotropic state (Q)=0. If H;; is uniaxial, then
01=S, 0»=Q0n=—3S, H;=H, and Hp=Hjy
=—1H. Here S =(P,(cosh)) is the usual order param-
eter, where 0 is the angle between the molecular long axis
and the director. We consider the case for which F does
not change the symmetry of the spontaneous breaking
state. We have followed the same € and Feynman graph
expansion technique [7-10] to calculate the equation of
state for the uniaxial state. It has been shown in the € ex-
pansion approach that the equation of state is well
defined in the vicinity of the coexistence curve [10].
More specifically, in terms of the scaling variables defined
by X =t /5" in Eq. (3) of Ref. [6], one has the structure

H/S®~(X+1)[1+ Aeln(X +1)+Be’InX(X +1)
+Celln(X +1)], X——1. ()

We start with the scaling equation of state of Ref. [6] and
observe that in the region X close to —1, it has the ex-
pression

H

§+%=f(X), 3)
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where
F(X)=(X+1){1+€[ 4 In(X +1)+B]
+e2[CIn (X +1)+D In(X +1)+E]} ,
4)

where we have neglected the term like (X+1) near
X =—1. The coefficients 4, B, C, D, and E can be writ-
ten as

A=%, (5a)
B=1L[3+9In(2)—9In(3)], (5b)
C=—21, (5¢)

=1:[721n(2)—361n(3)+ 142 ] (5d)
E =1 [3m*3)—Z1In*2)—%¥mn(2)], (5e)

and 8=3+e+0(e?), B=1—2et+0(e?), o=1+7Le
+0(e?),t=(T—T*)/T* and X =t/S'/P,

To define Eq. (3) uniquely, we choose the scales of H,
T, and S so that f(0)=1 and f(—1)=0,i.e., X =—1 cor-
responds to the coexistence curve [11]. In particular, the

longitudinal mass operator, i.e., exact self-energy
r, =0H /dS, behaves like 7, ~(1/B)S®1f"(X) as
X——1,ie,

Br

o1 =1+¢e[4AIn(X +1)+ 4 +B]

+eCIn¥ X +1)+(D +2C)In(X +1)
+E+D], X—>—1. (6)

Following Wallace and Zia [11], we considered
(Br, /S 1) '~C,+C,(H/S®) 2, 7

where C; and C,, the critical amplitudes, depend on €.
J
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Now inverting Eq. (6) and reexpressing the right-hand
side in terms of H /S°® from Eq. (4), Eq. (7) can be rewrit-
ten as

(Brp /8% )" '=1—¢(A1ny + 4 +B)
—e’[In}(y)(C — A4?)
+In(y)(D +2C —3A4%—24B)]
+const , (8)

where y =H /S3.

The coefficients of € Iny and €%In?y in (8) are hence con-
sistent with the expansion of ey “®/2. Comparing Egs. (7)
and (8) we obtain the coefficients C; and C, upto the or-
der of g,

1 €
—_— —_—— 2
C, 13 9 Yz 1171n(2)
—811n(3)+% +0(e?), 9
4 € 2
C, EE) 1+——338[1171n(3)+57] +0(e7) . (10)

With these values of C; and C, we find that the diverging
term in Eq. (7) will take over from the constant term
when

4 e |148
S$%)E25C,/C + +
(H/S®) 2/C1=7 |1+ -5 |3 +91In(2)
+0(€?) . (11)

We see that the divergent term should be noticeable for
H/S®<77%. The coefficient E in Eq. (4) is not required
to obtain C; and C,. Hence the scaling equation of state
near the coexistence curve can be written as [by dropping
E from f (x) of Eq. (4)]

H b oy 14+ E 41X +1)+3491n(2)—9In(3) (X +1)
s ge 26
g? ) 1424
+% —10In“(X +1)+ 721n(2)-—361n(3)+1—3 In(X+1) [(X+1). (12)

From thermodynamic arguments we know that
H = —0F/3S. Now we apply the same conditions as in
Ref. [6], namely, that the free energies of the isotropic
and nematic states be equal and that the free energy be a
local minimum with respect to S, which can be expressed
as

[ H(sds =0, (13a)

H(S)=0. (13b)

For fixed b these equations are to be solved for S =S, and
t =t,. The resulting value of ¢, is then expressed as

TABLE I. Calculated values of different parameters.

Previous results® Present results

Parameter €=0 (mean field) e=1 e=1
S, 0.4 0.4 0.4

t. 0.08 0.024 899 0.01

b 0.60 0.210 0.2208
% —5.0 —9.485 496 —5.5966
TC—T* 24 K 7.4699 K 3 K

#Data are taken from Ref. [6].
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t,=(T,—T*)/T*. Here b and S, are two unknown pa-
rameters. This requires a numerical solution of Eq. (13)
as a function of b by setting the experimental value
S,=0.4. The variation of order parameter with tempera-
ture are also examined. Table I shows the results of this
work and a comparison with our earlier result of Ref. [6].
The values are for the case T* =300 K.

DISCUSSION

As can be seen from Table I, the present calculation
gives a value of T, — T* much closer to observation. The
improvement is due to the fact that we utilized the equa-
tion of state near a coexistence curve on which the N-I
transition point falls, instead of using the equation of
state near a critical or a tricritical point, as was done in
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Ref. [6]. The closeness of the present result with the ob-
served T, —T* supports the idea that a renormalization
group calculation can lead to the resolution of the
T,—T* puzzle. This is contrary to the assertion of Tao
et al. [12] that a density dependent mean field and not a
fluctuation incorporating theory is needed for a station-
ary resolution.
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